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ABSTRACT

We present a completely analytical solution to a
filter-comparator oscillator system and verify it by
macro-model simulations and experiment. We discuss the
applications of this kind of oscillator in a vector-locked
loop system for continuous time filter tuning.

1. INTRODUCTION

In a sine-wave oscillator, positive feedback is used around
a frequency selective circuit to drive the poles of the cor-
responding closed loop linear system into the right half
s-plane. In the case to be considered in this paper, the
“gain” of the amplifier is set to oo, as shown in Figure 1,
leading to the filter—comparator oscillator. Such systems
are encountered in nonlinear control systems literature [1]
[2] [3] and bave been used by designers [4] in filter tuning
schemes.

The filter-comparator system could be analyzed by
using the describing function approach [2], where the non-
linear block is replaced by an “equivalent” linear block. A
first—order describing function analysis, however, predicts
that the system will oscillate at the filter pole frequency,
regardless of the filter quality factor, which is incorrect. A
higher order describing function analysis gets close to the
exact result. An exact method for systems consisting of
linear networks and relays has been proposed by Tsypkin
[3] and is described in detail in [2]. This method is very
complicated for this particular system.

The solution we present in this paper is straight-
forward, provides intuition, and gives information about
all the quantities of interest ezactly.

2. OSCILLATOR TRANSIENT AND
STEADY STATE

The system we analyze is shown in Figure 1. For simplic-
ity, until further notice we assume that the comparator
output levels are 0 and 1. The filter is of the second—order
bandpass type. Its transfer function is

S
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In the technique to be proposed below, we will employ the
step response of the filter, s(t), which is

1 —wot \ . 1
s(t) = 1_2_1,3.exp( 30 >sm(wo,/1—r02t)u(t)
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where u(t) is the unit step function. The step response
crosses zero at times

tn = nt1, n=0,1,2.. (3)
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The mechanism of oscillation build up will be de-
scribed with the aid of Figure 2. Let us assume that the
system is initially relaxed, and that oscillation is triggered
by a small positive noise at the comparator input at time
t = to = 0. This will cause a step input u(t) to the
bandpass filter. The output y(¢) of the bandpass filter for
0 < t < t; will coincide with the filter step response s(t),
as is shown in Figure 2. This waveform crosses zero at
t = t1, so at that instant the comparator switches again.
Between this switching instant and the next one, the com-
parator output can be represented by the superposition of
two steps, the first at to and the second at #1:

() = u(t) — ult - t1) ®)

Thus, for the same interval, the output of the linear filter
can be obtained using superposition as

y(t) = s(t) — s(t — t1) (6)
Notice that the zero crossings of s(t—t1) are t; apart from
each other, just as was the case with s(t). Also, the time
at which s(t —t1) starts coincides with the zero crossing t;
of s(t). Thus, the output y(t) = s(t) — s(t — £1) will reach
its next zero crossing when both s(t) and s(t — ¢1) cross
zero, i.e at £ = 2t;. At this point, the comparator switches
again, and so until the next zero crossing, its input will

b
° z(t) = u(t) — u(t —t1) +u(t —t2) )
and its output will be
y(t) = s(t) — st —t1) + s(t — 2t1) (8)

Reasoning as above, we conclude that the next zero—
crossing will occur at ¢ = 3t1, and so on. It now becomes
obvious that the output of the comparator can be repre-
sented for all positive time by

o(t) =Y _(~1)"u(t —nty) , t>0 (9)
n=0
The filter output then is:
[t/t1]
y(t) =Y (~1)"s(t — nt1) ; t>0 (10)
n=0

where [t/t1] denotes the integer part of £/t,. It is apparent
from Figure 2 that the terms in the sum that produces
y(t) are positive for nt; <t < (n+ 1)t; if n is even, and
negative if n is odd. By writing

[7=2 (11)
we see that the terms in the sum are all positive for mT <
t<mT+ %, and negative for mT + % <t< (m+ 1T,
where m is an integer. This is shown in Figure 3.
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2.1. Steady State Response

The steady state response can be obtained by using (2) in
(10) and allowing ¢ to increase. The result of this process
is :

2Q

yss(mT + 1) = Aexp <_ﬂ> Sin(WoseT), 0 < 7 < % (12)

T
= Aexp (—WO(TTQZ—-)“) Siﬂ(wosc’r), % <1< T

where :

= (13)

T = 27 (14)

A=

ooV |  ®

and m is any integer. The peak of the oscillatory waveform
is obtained by finding the maximum of y;;(mT +7) in the
time interval 0 < 7 < %, and is an exercise in calculus.

We will find this peak for the special case when the filter
quality factor is high, using (12) and (15):

1 1

&P V4Q2-1 V4Q2 -1
(16)
Thus,
2
Yss,peak A= ?Q s Q >>1 (17)

Note that, all along, we have assumed the differ-
ence in the clipping levels of the comparator to be unity.
In the more general case, the output will be directly pro-
portional to the difference in clipping levels of the com-
parator. In Figure 4, we show the predicted and observed
waveforms of the comparator and the filter when Q is
1. The measured and predicted amplitude of the output
is shown in Figure 5. Note that as the quality factor in-
creases, the amplitude increases as predicted by (17). The
frequency as a function of filter quality factor is shown in
Figure 6.

3. APPLICATIONS TO FILTER TUNING

A long standing problem in filter design has been to tune
a filter to a desired response in the face of variations in
temperature and other environmental factors, tolerances
and aging. The tuning strategy can be indirect [5] or di-
rect [6]. In either case, the filter to be tuned is a voltage
(or current) controlled filter, that is, a filter whose param-
eters are “programmable” by a set of control voltages(or
currents). For a second-order section the parameters of
greatest interest are the pole frequency and the pole qual-
ity factor. Hence these two parameters need to be tuned.

The general block diagram of a Vector Lock Loop
(VLL) based on a Voltage Controlled Filter (VCF) is
shown in Figure 7 [8] [7] [9]. This scheme is chosen in
order to appropriately introduce our proposed scheme in
the sequel. The variable of interest in the frequency con-
trol loop is ¢, the phase difference between the reference
and the output, while in the Q-lock loop, it is M, the ra-
tio of the output and input magnitude. We will now point
out the problem with inter-loop coupling in a conventional

VLL which uses a second order filter. For this argument,
the reader is referred to Figure 8(a). This shows the sit-
uation with the conventional vector locked loop. Assume
that, to begin with, the relative shape of the response is
very close to the ideal, while the center frequency devi-
ates significantly from the desired value. For purposes of
argument, assume that frequency and @ tuning is done
sequentially. The magnitude detector will have an out-
put which is very low, and this would cause the Q-loop to
increase the filter @, although there is only a frequency
error in the system. Now however, when the frequency
loop converges to the desired value, the quality factor will
be in error, and the magnitude loop now needs more time
to get back to the right value. Notice that if the desired
quality factor is large, then even a small error in pole fre-
quency could result in the magnitude detector sensing a
very low output. Thus the problems with locking tend
to get compounded with increasing filter selectivity. In
traditional schemes, these problems are taken care of by
making the Q-loop much slower than the frequency loop,
so as to make the loops quasi-independent. Note that,
ideally, we would want

6¢(‘”01Q) —
0 = 0 (18)
BM(wo,Q) .
w0 (19)

From Figure 8(a), it is obvious that all the problems with
the conventional design could be avoided if we were some-
how able to “move” the reference around, so that we can
always sense the peak gain of the filter, no matter at what
frequency it occurs. This situation is illustrated in Figure
8(b). Now, the magnitude detector output is constant re-
gardless of filter center frequency, and a function of quality
factor only. To generate a “reference frequency” which is
always equal to the filter pole frequency, one can make
the filter oscillate and pass its output through a limiter to
obtain a constant amplitude. This is precisely what the
system of Figure 1 does. From (17) it is apparent that the
amplitude of oscillation is now a single valued function of
filter quality factor only, and is completely independent of
pole frequency.

The entire vector lock loop is shown in Figure 9.
The pole frequency of the filter is set by locking the oscil-
lation frequency to the reference using a phase-lock loop.
The quality factor is set by measuring the output magni-
tude. A scheme for Q tuning which uses a VGA plus a
postprocessor instead of a comparator, has been proposed
elsewhere [11]. We now summarize the advantages of the
VLL just presented.

(a) The pole frequency can be tuned with abso-
lutely no error in spite of offsets in the frequency con-
trol loop because the system utilizes the PLL principle, in
which phase errors do not result frequency errors.

(b) The reference can be a square wave, unlike in
the VCF case, which demands a reference signal with low
harmonic content.

(c) The filter operates in a linear fashion, and the
oscillation frequency of the entire system tracks the pole
frequency of the filter with variations in ambient condi-
tions and other environmental factors.

(d) The amplitude and frequency loops are inde-
pendent.

Thus, this loop is a marriage of the VCF and the
PLL schemes, combining the advantages of both in the
same method, and getting rid of the disadvantages of ei-
ther methods. The loop has the same circuit complexity
as any other VLL scheme. A low-frequency version of the
proposed Vector Locked Loop was bread-boarded. The
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Figure 1. Block Diagram of the Oscilator =~ [ 7777777 77T
Master-Slave system was realized by using MOS transis-
tor arrays. Figure 10 shows the functionality of the fre- st mt 7me
quency and Q loops.
4. CONCLUSIONS s (et - __/mw
In this paper, we have presented an analytical technique
for the solution of a class of sinusoidal oscillators. A vector
lock loop, based on this class, has been proposed. The [P I E— < RN
individual loops of this VLL are uncoupled. This scheme : Ia——
combines the best of both the VCF and VCO schemes. F 1
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Figure 7. A conventional Vector Lock Loop(VLL)
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